LECTURE 11: SUPPLY CHAIN COORDINATION

Oran Kittithreerapronchai¹

¹Department of Industrial Engineering, Chulalongkorn University Bangkok 10330 THAILAND

last updated: August 3, 2021

1 Why does supply chain need a collaboration?

- 2 CATERPILLAR CASE STUDY
- **3** Deterministic Supply Chain Coordination
- **4** Collaboration with Revenue Sharing
- **5** Collaboration with Revenue Sharing

Key Ref.: [JC10] [Bal07] [CM07] [Goe11]

WHY DO WE NEED COLLABORATION?

- one company finish good = other company raw material \rightarrow Bullwhip effect
- focus on core competency \rightarrow fragmental ownership
- supply chain management \neq logistic \rightarrow profit
- supply chain management is not zero sum game

KEY QUESTION

How to coordinate the supply chain to perform as if they were a single cooperation?

- \bullet mutual trust \rightarrow Caterpillar Case Study
- synergy \rightarrow Quantitative Model
- information \rightarrow CHOPRA & MEINDL 2010. CHAPTER 16

Obstacles to Collaboration

- Incentive: multiple participate, local optimization
- Information processing: distorted info, forecasting censer data
- Operational: replenishment lead times
- Pricing:
- Behavioral:
 - deciding based on local and incomplete information
 - blame game
 - $\bullet\,$ lack of trust and communication \rightarrow opportunism, and no information sharing

ACHIEVING COORDINATION

- Aligning goals and incentives: pricing for coordination
- Improving info. accuracy: POS, collaborate forecasting and planning

Improving performance:

- $\bullet\,$ reducing lead time/demand uncertainty $\rightarrow\,$ safety stock
- reducing Reducing lot sizes
- rationing based on past sales and sharing information

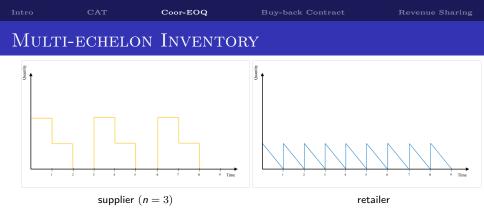
• Designing pricing strategies:

- incorporating sale/marketing
- stabilizing price

• Building partnerships and trust:

CATERPILLAR CASE STUDY

MAKE YOUR DEALERS YOUR PARTNERS by D. V. Fites 1990.


- CAT: manufacturers of construction & mining equipments
- Theme: distribution network, product support, & customer relationship
- Strength: distribution and service; not engineering, manufactory, quality
- Machines: high prices operating in harsh environments
- # Dealers: 186 worldwide
 - $\bullet\,$ close tight with consumer $\rightarrow\,$ service
 - $\bullet~\text{investment} \rightarrow \text{outstanding distribution requires}$
 - $\bullet\,$ mutual trust & benefit \geq contractual agreement
 - reduce TIME-TO-MARKET

CAT PRINCIPLES

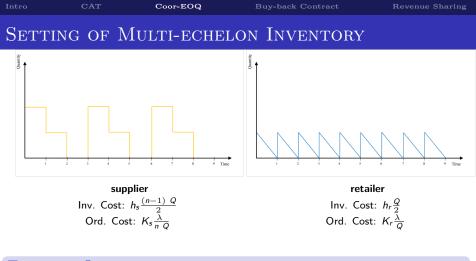
- \bullet don't exploit your dealers \rightarrow establish mutual trust
- give your dealer supports
- ensure your dealer are well run
- communicate freely, honestly, and frequently
- believe in strong business relationship is personal (but no compromised)
- strive to keep dealer ships in family

Multi-echelon Inventory

- What: coordination with EOQ inventory model
- Also-Known-As: multiple stocking points
- Assumptions
 - deterministic and external demand
 - no substitute product
 - single channel
- Idea: match inventory cycle between a vendor and a retailer
- Example: retailer and independent warehouse (rare)

- Retailer has inventory Q^{*}
- Supplier has inventory $n \cdot Q^*$, where $n \in \mathbb{Z}^+$
- What would be the optimal n and Q*?

REVIEW: ECONOMIC ORDER QUANTITY (EOQ)


Economic Order Quantity

Quantity
$$(Q^*) = \sqrt{\frac{2\lambda K}{h}}$$

Total Cost $(TC(Q^*)) = c\lambda + \sqrt{2\lambda K h}$

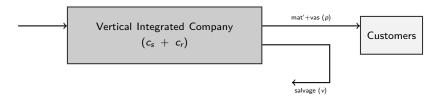
where, Q = Quantity

$$TC(Q) = Total costs$$

- $\lambda \quad = \quad {\rm Demand \ rate}$
 - c =Unit purchasing Cost
- K = Ordering cost
- h = Holding cost

ECHELON QUANTITY

$$Q^*(n) = \sqrt{\frac{2\lambda (K_r + K_s/n)}{h_r + h_s(n-1)}}$$


Example of Multi-echelon Inventory

demand: 2,000 units per year

supplier	retailer
$K_s = 600$ USD per order	$K_r = 100$ USD per order
$h_s = 10$ USD per unit-year	$h_r = 30$ USD per unit-year

	Ind.	n = 1	n = 2	n = 3	n = 4	n= 5
Qs	489.9	305.5	400.0	464.8	516.4	560.6
Qr	115.5	305.5	200.0	154.9	129.1	112.1
TCs	4899.0	3,927.9	4,000.0	4,131.2	4,260.3	4,383.0
TC _r	3464.1	5,237.2	4,000.0	3,614.8	3,485.7	3,465.6
TC	8363.1	9,165.2	8,000.0	7,746.0	7,746.0	7,848.6

- Why Multi-Echelon fails: perishableor stochastic demands
- Idea: stochastic model based on newsvendor model
- **Observations:** lack of communication, local optimum, unbalancing negations power
- **Solutions** with pricing contract (buy-back contract, unit discount, revenue sharing)

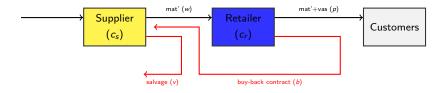
Review: Newsvendor

NEWSVENDOR

Expected total Profit = Expected net revenue – Total net investment $\pi(q) = (p - v) \cdot S(q) + v \cdot \mu(q) - c \cdot q$ Quantity $(q^*) = F^{-1}\left(\frac{p - c}{p - v}\right)$

where,
$$q = Quantity$$

$$\pi(q) = \text{Total profit}$$


$$F(\cdot)$$
 = Cumulative probability function

$$S(q)$$
 = Expected units sold, $S(q) = q - \int_0^q F(y) dy$

$$\mu(q) = \text{Expected units unsold}, \mu(q) = \int_0^q F(y) dy$$

- c =Unit purchasing cost
- p =Unit selling cost
- v = Unit savaging value

BUY-BACK CONTRACT

- What is a Buy-back contract?
 - Supplier agrees to buy leftover products back from retailer
 - Supplier increases the salvage value from v to b
- What does this scheme help?
 - sharing risk of overstock
 - motivating retailer to buy more → more revenue

How much should supplier buy products back?

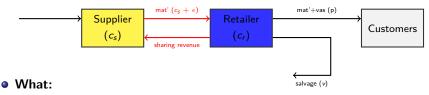
DERIVATION: RETAILER PROBLEM

$$q_V^* = q_r^*$$

$$\frac{p - (c_r + c_s)}{p - v} = \frac{p - (c_r + w_b)}{p - b}$$

$$w_b = p - c_r - \frac{(p - b)(p - c_r - c_s)}{p - v}$$

- Given w_b and b, retailer faces a typical Newsvendor problem
- Rational of bay back price: $w_b + c_s \ge b \ge v$
- Rational of wholesale price: $p c_r \ge w_b \ge c_s$


EXAMPLE OF BUY BACK CONTRACT

customer demand	Uniform(0,100)			
	supplier	retailer		
cost	$(c_s) = 10$ USD	$(c_r) = 5 \text{ USD}$		
sale	(w) =? USD	(p) = 30 USD		
salvage	(<i>b</i>) =? USD	(v) = 5 USD		

w	10	11	10	13	16	19
b	5	5	8	10	15	25
$Pr(\cdot)$	0.6	0.56	0.68	0.6	0.6	1.0
$F^{-1}(\cdot)$	60	56	68.18	60	60	100
<i>E</i> [sold]	42	40.32	44.94	42	42	50
<i>E</i> [unsold]	18	15.68	23.24	18	18	50
π_r	450	392	511.36	360	270	350
π_r	0	56	-69.73	90	180	-100
П	450	448	441.63	450	450	250

- Supplier agrees to sell products at its marginal cost to retailer
- Retailer must share portion of profit back to supplier
- Idea: reduce cost \rightarrow more demands and revenues
- Examples: Blockbuster, Software licensing, 3PL

How Blockbuster Changed The Rules

- 1 How was Blockbuster doing business before the time of article?
 - Insufficient stock & high marginal cost (i.e., from 65 USD per copy)
- 2 What is a Revenue Sharing?
 - sell at its marginal cost, but share profit to supplier
- 3 How does Revenue Sharing help Blockbuster and movie production company?
 - capture more demands & simplify exceeds DVDs demand after peak
- 4 What are limitations of Revenue Sharing?
 - Profit observation
- 5 What do contribute to a recent decline of Blockbuster after implementation?
 - Competitions: Rental machine, NetFlix (mail-in), Internet file-sharing
 - Upstream: Shorter time window, Decline of industry
 - Outside factors: Cheaper technology, Format war

Reference

[Bal07] Ronald H Ballou.

The evolution and future of logistics and supply chain management. *European Business Review*, 19(4):332–348, 2007.

[CM07] Sunil Chopra and Peter Meindl.

Supply chain management. Strategy, planning & operation. Springer, 2007.

[Goe11] Marc Goetschalckx.

Supply chain engineering, volume 161. Springer, 2011.

[JC10] F Robert Jacobs and Richard B Chase. Operations and supply management: The core. McGraw-Hill Irwin New York, NY, 2010.