Lecture 07 Warehousing Design and Design of Fast-Pick Area

Oran Kittithreerapronchai¹

¹Department of Industrial Engineering, Chulalongkorn University Bangkok 10330, THAILAND

last updated: August 8, 2022

Warehouse v2.0: Fact Pick Area

- **1** INTRODUCTION TO FAST-PICK AREA
- 2 How much space should be allocated to each SKU ?
- **3** Which SKUs should be in fast-pick area?
- What is the 'right' size of the fast-pick area?
- **BEYOND FLUID MODEL: LIMITATION & GENERALIZATION**

source: General references [BH09, Mul94, Fra02, ?]

- What : compact & picking efficiently warehouse
- Idea: moving 'small'& 'popular' SKUs to gain efficiency
- Pro: reduce searching & traveling time
- Con: double handling, additional refilling, additional equipment
- Example: Avon cosmetic, Office Depot ink carriages, Gums shelve casher

CONCEPT OF FAST-PICK AREA

source: Bartholdi, J. & Hackman, S. 2009. [BH09]

QUESTIONS FOR FAST-PICK AREA

- 1) What are the optimal total spaces of the fast-pick area?
- 2) Which SKUs should be put in the fast-pick area?
- 3) How much space each SKU should be allocated?

Trade-off between additional restocking & inexpensive picking with fluid model [HP90]

Assumptions

- Each piece is very 'small'
- Restocking cost depends on # of restock (c_r)

Notations

- \mathcal{I} = set of SKUs in warehouse
- ${\mathcal F}\,=\,{\sf set}$ of SKUs in fast pick area, ${\mathcal F}\subseteq\,\,{\mathcal I}$
- f_i = flow of SKU *i* within one period of time (m^3 /time)
- v_i = assigned volume of SKU *i* in fast-pick area (m^3)

V = total available volume in the fast-pick area (m^3)

- Decision variable: v_i
- Constraints: $\sum_i v_i \leq V$
- **Objective:** min restocking cost = min # restocking

• **# restock:**
$$\frac{\text{flow}}{\text{assigned volume}}$$
 or $\frac{f_i}{v_i}$ for SKU *i*

Assuming that \mathcal{F} is given, then total restock costs:

$$\min \ z = \ c_r \sum_{i \in \mathcal{F}} \frac{f_i}{v_i}$$

s.t.

$$\sum_{i\in \mathcal{F}} v_i \qquad \leq V$$

Three popular policies

- Equal space: each SKU is assigned equal space
- Equal frequency: each SKU will be refilled equal frequency
- Optimal: ???

	SKU Space	Which SKU	What Size	Beyond Fluid Model
Exampi	LES			

The annual sale quantities of SKUs A & B are $90 \& 160m^3$, respectively. What are numbers of restocks of each SKU, if total volume in FPA is 50 m³

- A) each SKU get $25m^3$
- B) SKUs A & B get $18 \& 32m^3$, respectively
- c) SKUs A & B get $21.43 \& 28.37 m^3$, respectively

	A) space	B) frequency	C) customize
space to SKU (v_A, v_B)	(25, 25)	(18, 32)	(21.43, 28.37)
restock to SKU	(3.6, 6.4)	(5.0, 5.0)	(4.2, 5.6)
total restock	10	10	9.8

- # restock of equal space = # restock equal frequency
- How to compute optimal policy (i.e., customize)

- What: each SKU is assigned equal space in fast-pick area
- Space: $v_1 = v_2 = \ldots = v_n \rightarrow \frac{V}{n}$
- **# Restock:** $\frac{f_i}{v_i} = \frac{n f_i}{V}, \forall i \in \mathcal{F}$
- Total restocks: $\sum_{i \in \mathcal{F}} \frac{n f_i}{V} = \frac{n}{V} \sum_{i \in \mathcal{F}} f_i$
- What: each SKU will be refilled equal time/frequency in fast-pick area
- Space: $v_i = \frac{f_i}{f_1} v_1$ $V = \sum v_i = \frac{v_1}{f_1} \sum f_i$

• # Restock: $\frac{f_1}{v_1} = \frac{f_2}{v_2} = \dots = \frac{f_n}{v_n} = \alpha$ $v_i = \frac{f_i}{\alpha}$ Hence, $\sum_{i \in \mathcal{F}} v_i = \sum_{i \in \mathcal{F}} \frac{f_i}{\alpha} = V$ • Total restocks: $\sum_{i \in \mathcal{F}} \frac{f_i}{v_i} = n\alpha = \frac{n}{V} \sum_{i \in \mathcal{F}} f_i$

Intro SKU Space Which SKU What Size Beyond Fluid Model
OPTIMAL SPACE RATIO =
$$\frac{\sqrt{\text{FLOW}_i}}{\sum_{j \in \mathcal{F}} \sqrt{\text{FLOW}_j}}$$

$$\min z = C_r \left(\frac{f_a}{v_a} + \frac{f_b}{v_b} \right)$$
s.t.
$$v_a + v_b \ge V$$

Set constraint binding

$$C_r\left(\frac{f_a}{v_a}+\frac{f_b}{V-v_a}\right)$$

Apply FOC, i.e., $\frac{\partial}{\partial v_a} z = 0$

$$C_r \left(-\frac{f_a}{v_a^2} + \frac{f_b}{(V - v_a)^2} \right) = 0$$

$$\frac{f_a}{v_a^2} = \frac{f_b}{(V - v_a)^2}$$

$$v_b = \frac{\sqrt{f_b}}{\sqrt{a}} v_a = \frac{\sqrt{f_b}}{\sqrt{a} + \sqrt{f_b}} V$$

	SKU Space	Which SKU	What Size	Beyond Fluid Model
SUMMAI	RY			

	Equal time	Equal space	Optimal
space to SKU <i>i</i>	$\frac{f_i}{\sum_{j\in \mathcal{F}} f_j} V$	V/n	$\frac{\sqrt{f_i}}{\sum_{j\in \mathcal{F}} \sqrt{f_j}} V$
restock to SKU <i>i</i>	$\frac{1}{V}\sum_{j\in \mathcal{F}}f_j$	$\frac{n f_i}{V}$	$\frac{\sqrt{f_i}}{V}\sum_{j\in \mathcal{F}}\sqrt{f_j}$
total restock	$\frac{n}{V}\sum_{j\in \mathcal{F}}f_j$	$\frac{n}{V}\sum_{j\in \mathcal{F}}f_j$	$\frac{1}{V}(\sum_{j\in \mathcal{F}}\sqrt{f_j})^2$

Example 2: Space for each SKU

A warehouse manager considers to put three items, i.e., SKUs A, B, & C, into a newly develop fast-pick area. The historical data of these items are listed as follow:

SKU	flow (f_i)
А	$4m^3$ per year
В	$2m^3$ per year
С	1 m^3 per year

If the total storage space of fast-pick area is $0.6m^3$, what are space & number of restock of each SKU if he implements (a) optimal policy, (b) equal time policy, & (c) equal space policy.

Solutions to Example 2

Space

	Equal time	Equal space	Optimal
SKU A	$\frac{4}{4+2+1}0.6$	0.2	$\frac{\sqrt{4}}{\sqrt{4}+\sqrt{2}+\sqrt{1}}0.6$
SKU B	$\frac{2}{4+2+1}0.6$	0.2	$\frac{\sqrt{2}}{\sqrt{4}+\sqrt{2}+\sqrt{1}}0.6$
SKU C	$\frac{1}{4+2+1}0.6$	0.2	$\frac{\sqrt{1}}{\sqrt{4}+\sqrt{2}+\sqrt{1}}0.6$

Restock

	Equal time	Equal space	Optimal
SKU A	11.66	20.0	14.71
SKU B	11.66	10.0	10.42
SKU C	11.66	5.0	7.35
Total	34.98	35.0	31.48

- Possible SKU in fast pick: $2^{|\mathcal{I}|}$ if \mathcal{I} is set of all SKUs
- Reality Check: two extremes case of fast-pick area (\mathcal{F})
 - $\mathcal{F}=\emptyset$ imply no saving from fast-pick area
 - $\mathcal{F} = \mathcal{I}$ too many activity (both pick & restocks)
- Why 'small' & 'popular' SKUs?:

POPULAR generate high # pick SMALL reduce # restock

• benefit per pick = difference unit picking cost of fast pick & reserve

For each SKU in fast pick area, benefits > restock costs

Reserve

source: Bartholdi, J. & Hackman, S. 2009. [BH09]

• Total benefits: $\sum (saving \times pick of each SKU)$

• Total costs: \sum (restock cost \times # restock of each SKU)

- s = pick saving when a SKU move to fast-pick area (\$/pick)
- p_i = picking rate of SKU *i* (pick/time)

 c_r = restocking cost at the fast-pick area (\$/restock)

- Variable: select set of SKUs
- Constraint: N/A
- Objective: $\max \sum [benefits restock costs]$

$$\max \sum_{i \in \mathcal{F}} \left[s p_i - c_r \frac{f_i}{v_i} \right]$$

Total Net Benefit =
$$\sum_{i \in \mathcal{F}} \left[s p_i - c_r \frac{f_i}{v_i} \right]$$

Analysis: each SKU in fact pick, say k: Its benefit must be ≥ 0 , say ϵ

Net Benefit_k =
$$sp_k - c_r \frac{f_k}{v_k}$$

= $sp_k - c_r \frac{f_k}{\frac{\sqrt{f_k}}{\sum_{j \in \mathcal{F}} \sqrt{f_j}}} V$
= $sp_k - c_r \frac{(\sqrt{f_k}) \cdot (\sum_{j \in \mathcal{F}} \sqrt{f_j})}{V} = \epsilon$
 $\frac{p_k}{\sqrt{f_k}} = c_r \frac{\sum_{j \in \mathcal{F}} \sqrt{f_j}}{sV} + \epsilon \frac{\sqrt{f_k}}{s}$

selecting SKU to Fact-Picking area

• Parameters are: $\sqrt{\text{flow}}$ & pick, particularly $\frac{\text{pick}}{\sqrt{\text{flow}}}$

• Term
$$\frac{\text{pick}}{\sqrt{\text{flow}}}$$
 is called viscosity

Hence

THRESHOLD SKU *i* is in fast-pick area if
$$\frac{p_i}{\sqrt{f_i}} > \frac{C_r}{sV} \sum_{j \in \mathcal{F}} \sqrt{f_j}$$

PRACTICAL adding SKU in descending order of viscosity until total net benefit stops increases

source: Bartholdi, J. & Hackman, S. 2009. [BH09]

From the previous example, the historical pick data are follow:

SKU	pick (<i>p_i</i>)	flow (f_i)	viscosity $\left(\frac{p_i}{\sqrt{f_i}}\right)$
A	20 times	$4m^3$ per year	10.0
В	30 times	$2m^3$ per year	21.2
С	25 times	1 m^3 per year	25.0
D	$15 \mathrm{\ times}$	$2m^3$ per year	10.6

If each restock take 5 minutes & moving item into a fast-pick area takes traveling & searching time 2 minutes per each pick. As a logistics analysis, what is your recommendation to a warehouse manager choice of SKUs.

Example 3: Calculating Saving

Case 1	l: $\mathcal{F} = \{$	<i>C</i> }		
SKU	Vi	saving $(s \cdot p_i)$	restock $(c_r \cdot \frac{f_i}{v_i})$	benefit (minutes)
С	0.600	(25)(3)	(5)(1)/(0.6)	66.67

Case 2: $\mathcal{F} = \{C, B\}$

SKU	Vi	saving $(s \cdot p_i)$	restock $(c_r \cdot \frac{f_i}{v_i})$	benefit (minutes)
С	0.250	(25)(3)	(5)(1)/(0.25)	55.00
В	0.350	(30)(3)	(5)(2)/(0.35)	61.43

Case 3: $\mathcal{F} = \{C, B, D\}$

SKU	Vi	saving $(s \cdot p_i)$	restock $(c_r \cdot \frac{f_i}{v_i})$	benefit (minutes)
С	0.156	(25)(3)	(5)(1)/(0.156)	42.95
В	0.222	(30)(3)	(5)(2)/(0.222)	44.95
D	0.222	(15)(3)	(5)(2)/(0.222)	-0.05

Example 3: Saving List

${\cal F}$	$\sum_{j} \sqrt{f_j}$	v	benefits (s)
Ø	0.00	0	0
{ <i>C</i> }	1.00	$\{.6\}$	66.6
{ <i>C</i> , <i>B</i> }	2.41	$\{.250, .350\}$	116.43
{ <i>C</i> , <i>B</i> , <i>D</i> }	3.83	$\{.156, .222, .222\}$	87.85
$\{C, B, D, A\}$	5.83	$\{.104, .145, .145, .206\}$	

- Warning: 'fast-pick area' is not for every warehouse
- Space: large space \rightarrow more SKU but less saving
- Equipments: benefits, capacity, investmet
- Pickers: management (fixed or circulated pickers), payment, restocker

Determine size of fast pick area

- Method: trial-and-error (smart search)
- Rule of thumb: fast pick space $<\frac{1}{4}$ of storage space
- Issue: different saving in each size/zone,

source: Bartholdi, J. & Hackman, S. 2009. [BH09]

- Discrete quantity: Real SKU has shape & size, not fluid scale-able volume
- Pick pattern: #pick pattern ---> uniform pattern nor equally distributed
- Pick relationship: Few SKUs must pick together, not independent pick
- Equipment constraint: multiple picking method, no fractional slot
- Parameter: different pick saving and/or restock cost [KM08]

• Minimum/Maximum quantity: $\underline{v}_A \leq \overline{v}_A \leq \overline{v}_A$

$$\begin{array}{l} \text{if } \frac{\sqrt{f_A}}{\sum_j \sqrt{f_j}} V > \overline{v}_A, \text{ then } v_A = \overline{v}_A \\ \text{if } \frac{\sqrt{f_A}}{\sum_j \sqrt{f_j}} V < \underline{v}_A, \text{ then } v_A = \underline{v}_A \end{array}$$

• Affiliated picking: SKUs A & B must be together
$$(p_A = p_b = p_{A,B})$$

calculate $\frac{p_{A,B}}{\sqrt{f_{A,B}}}$

• Unit load: Fluid Model breaks down

 $0/1/All\ rule$

	SKU Space	Which SKU	What Size	Beyond Fluid Model
Proble	CMS			

Suppose you have 2 cubic meters available in flow rack, which is restocked from a distant reserve area, & you have just added three SKUs, with projected activity as follows.

SKU	picks/month	pieces/month	pieces/case	$m^3/case$
А	1000	2000	200	0.2
В	300	1200	6	0.7
С	250	4000	10	0.1

- Suppose you have decided to put all three SKUs in flow rack. How much space should be allocated to each SKU to minimize number of total restock?
- Based on the previous question, how often must each SKU be restocked?
- Assume that it costs an average of \$0.15 per pick from flow rack but costs about \$1/restock. The alternative is to pick from reserve, where each pick costs about \$0.25. Which SKUs should put in the flow rack? & How much space should they be allocated?

	SKU Space	Which SKU	What Size	Beyond Fluid Model				
Reference								
[BH09] J. J. Bartholdi and S. T. Hackman. Warehouse & distribution science. Suply chain and logistics institute, Georgia institute of technology, 2009.								
[Fra02]	E. Frazelle.							

World-class warehousing and material handling.

McGraw-Hill Professional, 2002.

[HP90] S.T. Hackman and L.K. Platzman. Near-optimal solution of generalized resource allocation problems with large capacities. *Operations Research*, 38(5):902–910, 1990.

[KM08] C. Kong and D. Masel.

Methods for design and management of a fast-pick area in a warehouse.

In Proceeding of the 2008 industrial engineering research conference, pages 1367–1372, 2008.

[Mul94] D.E Mulcahy.

Warehouse distribution and operations handbook.

McGraw-Hill New York, 1994.