LECTURE 10 STOCK COUNTING AND WAREHOUSE MANAGEMENT SYSTEM

Oran Kittithreerapronchai¹

¹Department of Industrial Engineering, Chulalongkorn University Bangkok 10330, THAILAND

last updated: August 8, 2022

OUTLINE

- 1 Stock Counting: Physical Inventory = Inventory in System
- 2 How & When should we do stock count?
- 3 Introduction to WMS
- WAREHOUSE ACTIVITY VIA WMS

source: General references [BH09, Mul94, Fra02, ?]

Why do we need stock count?

- Regulation: accounting → government tax bureau
 - → share holders (public company)
- Management: data update system, generate report
- Operations: re-location, check condition, planning & control

Example: 360,000 inventory records from 37 stores of a major US retail chain:

- 65% of records were inaccurate
- 29% were inaccurate before opening
- Average error: 30% of on-hand inventory

source: Dehoratius, N. & Raman, A. 2008. [DR08]

Sources of inaccuracy

- **Inbound:** # item shipped \neq # on bill, misplaced on arrival
- Outbound: pick from wrong locations/items
- In-house: company own faults

System: scan errors, bad units of measure, human integration

ITEM: shrinkage, obsolete

HUMAN: theft (pilferage), carelessness (put-away at wrong position)

EFFECTS OF INACCURATE STOCK

- Tax complications: black list, investigation
- Bullwhip Effect: more safety stock downstream → inconsistency order upstream
- Stock outs: (actual < system)
 - reduced customer service level
 - increased levels of safety stock
- **Disruptions:** (actual > system) thought that ∄ storage location
 - lose creditability, no storage space, dead stock
 - high inventory cost

source:

How do we do stock counting?

Periodic Count/Physical Count

- What: count all SKUs at the same time (1-2 time a year) \rightarrow big gap
- Pro: easy to implement, easy to reconcile
- Con: no business, many workers, know in advance, difficult to write-out values

Cycle Count

- What: count few SKUs everyday; some SKU may more often
- Pro: adjustable workload & workforce, prevent inside thefts
- Con: consistency, negotiate with accounting
- Issue: How often each SKU gets count (ABC analysis of stock value)

Example: Suggested count frequency

You are a project engineering, who hires to implement cycle count in a warehouse. Currently, this warehouse have 397 SKUs, which can be classified by their values as follow:

		frequency		
Class	# of SKU	minimum	suggested	
Α	26	6	$f_{\mathcal{A}}$	
В	96	4	f_B	
C	275	2	f_C	
D	71	1	f_D	

The warehouse can spare the last 20 minutes of 4 workers to perform cycle count. Assuming that there are 250 working days & each SKU requires 15 minutes to count, on average. What are your suggested frequency of each class?

SOLUTION: SUGGESTED COUNT FREQUENCY

- Idea: average cycle count ≤ total man-hour
- Total resources: $250(\text{ day/year}) \times 4(\text{ workers}) \times 20(\text{ minute/day}) = 20000(\text{ worker-minute})$
- Estimated counting time:

frequency							
Alternative	Α	В	C	D	worker-minute		
A0	6	4	2	1	17,415		
A1	9	5	2	1	20,025		
A2	6	5	2	2	19,920		

Issues:

- Management: x-worker → 1 SKU for each worker?
- Methods: man-hour VS #SKU, average value, recording system
- Operation: inventory cycle

STOCK COUNT STRATEGY

- Eliminate counting: eliminate loose carton
- Simplify counting: weight item

Counting is not productive warehouse activity, so plan your next count.

When to count

- Count before replenishment:
- Few inventory left: counting 3 units & 300 units are totally different
- Every so many transactions: because errors tend to happen

WHAT IS WMS?

- Information System: IT/IS for operational in warehouse
- Integration: collect, analyze, & report all activities
- Important: strategic decision to modernize WH
- Industry: high transaction, require tracking
- Standard Function: search & track SKU, batch processing, individual report
- Advance Function: cycle count, profiling, RF, data transfer

HISTORY OF WMS

- 1975 First WMS installed at J.C. Penney.
- - 1995 become \$100 million business
 - 2000 Expanded suites with TMS .
- TODAY User-configurability & scalability remain key differentiator

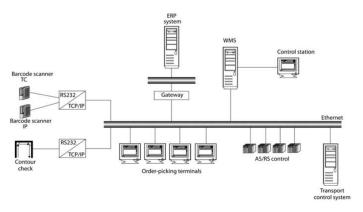
source: Brett Peters. "Collect-Industry Council on Material Handling Education"

Thailand

- 1997 introduce by modern trade
- 2000s adopted by large retailers
- TODAY more adoptees, niche market

EVIL CYCLE IN A WAREHOUSE

- Business growth: fear of lost sale → more SKUs & qty
- ullet Warehouse managing: inaccuracy, miss delivery o no space, long cycle time
- Warehouse expansion: deadstock, seasonality → expansion, more equipments & workers
- Costs increasing: more capital \rightarrow economy of scale

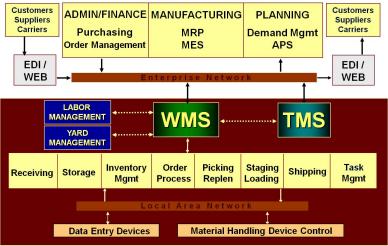

How to break this cycle? → better management with WMS

- Efficiency: 1st step of automation & modern Warehousing Mgt.
- Transparency: enabler to change → less flexible to do thing

MINIMUM REQUIREMENT OF WMS

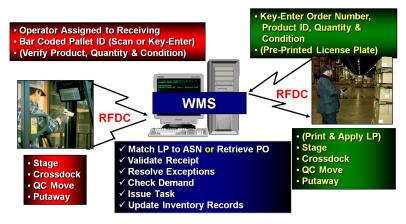
- Access & Tracking Control: multi-users, roles & authorization
- Radio Frequency: realtime access, hand held device (Villa Grocery)
- Flexility: unit-change, adjust picking policy, manual overwrite, export data
- Management: cycle count, picker KPIs, report, integration

World of WMS


source: ten Hompel & Schmidt. "Structure of a WMS from the Example of myWMS" [tHS07]

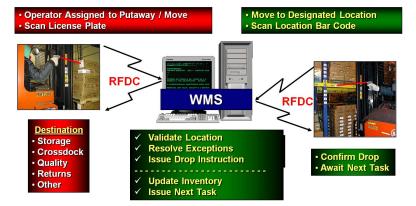
- WMS market is niche IT market ↔ equipment, trading, data sharing
- In US, ∃ many new & extinct vendors
- Thailand limited in big company, high volume

Warehouse v2.0: WMS

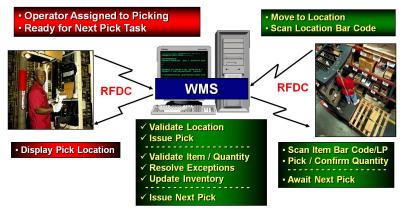

ERP/WMS/TMS

ENTERPRISE SYSTEM

source: Brett Peters. "Collect-Industry Council on Material Handling Education"

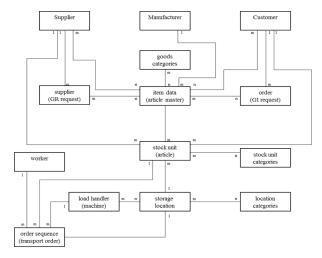

RECEIVING WITH WMS

source: Brett Peters. "Collect-Industry Council on Material Handling Education"


Warehouse v2.0: WMS 16/27

Put-Away with WMS

source: Brett Peters. "Collect-Industry Council on Material Handling Education"


PICKING WITH WMS

source: Brett Peters. "Collect-Industry Council on Material Handling Education"

Warehouse v2.0: WMS 18/27

ER DIAGRAM OF WMS

source: ten Hompel & Schmidt. "Structure of a WMS from the Example of myWMS" [tHS07]

COMPONENTS IN WMS

- Product Files: (Item Master): SKU ID, descriptions, dimensions, date, lot, units, bills of material, substitutions
- Location Files: (Location Master): address ID, layout, quantity, sequencing, dimensions, capacity
- History Files: (Order Master): date, customer/supplier, document ID, quality, unit
- Equipment Files: equipment ID, location, status, capacity
- Employee Files: worker ID, labor standards, operator-equipment matrices, incentive,
- Customer Files: customer ID, contact, term of payment, evaluation

source: Brett Peters. "Collect-Industry Council on Material Handling Education"

WMS COST BREAKDOWN

Components	% Total Costs			
Hardware				
Computer	6			
RF Data Comm	24			
Bar Code Applicator	8			
Software				
WMS Licence	8			
WMS Enhancements	10			
Host Interface	6			
Other Software Licence	4			
Implementation				
Location Labels	6			
WMS Installation Service	21			
Project Team Cost	6			

SIGNS FOR WMS CONSIDERATION

- **Complaints:** ship accuracy, ↑ # checker,
- Data management: cycle count, multi-crowded, picker KPIs
- Productivity: 1000 line/ man-hr
- Cycle time: hot released for truck
- Business: short cycle or long cycle count, high turnover

WMS JUSTIFICATION

Task Related Cost

- Direct labor: better measure/control individual performance
- Indirect labor: reducing training & supervising
- Administration: automate collecting & analyzing data

Possible saving

- Tangible savings: space utilization, paperwork, expedited delivery
- Intangible savings: customer service, inventory turnover, performance measurement

source: Brett Peters. "Collect-Industry Council on Material Handling Education"

CHOOSING WMS PROVIDERS

- Complete package: limited target group, special functions in modules
- State-of-Art technology: text-interface VS GUI, web-browser, shorter life cycle
- Implementation capabilities: adjustable parameters, experienced consultants
- Considerable customer base: recommendation, match with equipments or operations, 'best practice',
- Professional organization: trustworthy, after-sale service, stay in business

source: Jeroen van den Berg Consulting. 2002

WMS Trends

- Connectivity: RFID, other information system (e.g., supplier ERP)
- Costing analysis: activity based costing & management of individual picker
- Embedded profiling: facilitate re-layout & inventory slotting
- Leveraging data: utilizing more data/information
- Sharing data: accessing data by other parties, including consumer
- Software as a Service (SaaS): rented on-demand at low monthly cost per user

PROBLEMS

- 1. Explain the similarities and differences between *Enterprise Resource Planning* and *Warehouse Management System*
- 2. Elaborate the main features in Warehouse Management System

REFERENCE

[BH09] J. J. Bartholdi and S. T. Hackman.

Warehouse & distribution science.

Suply chain and logistics institute, Georgia institute of technology, 2009.

[DR08] Nicole DeHoratius and Ananth Raman.

Inventory record inaccuracy: an empirical analysis.

Management Science, 54(4):627-641, 2008.

[Fra02] E. Frazelle.

World-class warehousing and material handling.

McGraw-Hill Professional, 2002.

[Mul94] D.E Mulcahy.

Warehouse distribution and operations handbook.

McGraw-Hill New York, 1994.

[tHS07] Michael ten Hompel and Thorsten Schmidt.

Structure of a wms from the example of mywms.

In Warehouse Management: Automation and Organisation of Warehouse and Order Picking Systems, pages 307–340. Springer, 2007.