Lecture 06 Prediction Tasks: Time Series & Regression

Oran Kittithreerapronchai¹

¹Department of Industrial Engineering, Chulalongkorn University Bangkok 10330 THAILAND

last updated: August 7, 2023

Forecasting 101	Time Series	Regression	ARIMA	SG Load
OUTLINE				

- 1 Review of Forecasting
- 2 Time Series Techniques
- 3 Review of Regression
- **5** Cluster with with R

source: General references [NC20, TSK16, BG19, Pat14]

Recommend Textbook

Hyndman, J., & Athanasopoulos, G. (2018) *Forecasting: principles and practice*, 2nd edition, OTexts: Melbourne, Australia. OTexts.com/fpp2.

Types of Forecasting

- Qualitative/Judgmental: using subjective inputs
- Time Series: using it own past data as inputs
 - Smoothing Technique
 - Trend and Seasonality
 - Classical Decomposition Method
- Causal/Regression: using related data/factors as inputs
- Simulation: using both Time Series and Causal in computer simulation
 - Imitate consumer choices that give rise to demand
 - Combine time series and causal methods

$A = F + E + \epsilon$

- **Observation:**(*A*) actual data from history
- Systematic component: (F) expected value of demand/ forecasting value

LEVEL: current de-seasonalized demand TREAD: growth or decline in demand SEASONALITY: predictable seasonal fluctuation IRREGULAR: error or residuals

- Forecast error: (E) difference between forecast and actual demand
- Random component: (\epsilon) part of the forecast that deviates from the systematic component

- Description: story, relationship with other data
- Time Horizon: hour, day, week, year
- Pattern of Data: seasonal, trend, cycle
- Forecasting Model: assumption, data required, parameters, static VS dynamic
- Accuracy: measuring, how to improve

A GOOD FORECASTER SHOULD:

- be creative & curiosity
- master the 'art' and understand science

FACTS ABOUT FORECASTING

- Forecasting is, typically incorrect
- Forecasting is suitable for a group of products
- Forecasting is inaccurate as time horizon increases

source: Chopra and Meindl. 2001. pp. 69

Why do we still need Forecasting?

- Incorrect future is better than knowing nothing
- Incorrect result is manageable

- Idea: "average" of Actual_t Forecast_t
- Example: Mean Error (ME), Mean Absolute Deviation (MAD), Mean Square Error (MSE), Mean Absolute Percentage Error(MAPE), Tracking signal (TS)

$$ME = \frac{1}{N} \sum_{t=1}^{N} A_t - F_t \qquad MSE = \frac{1}{N} \sum_{t=1}^{N} (A_t - F_t)^2$$

$$MAD = \frac{1}{N} \sum_{t=1}^{N} |A_t - F_t| \qquad MAPE = \frac{1}{N} \sum_{t=1}^{N} \frac{100 |A_t - F_t|}{A_t}$$

$$bias = \sum_{t=1}^{N} A_t - F_t \qquad TS = \frac{\sum_{t=1}^{N} A_t - F_t}{\sum_{t=1}^{N} |A_t - F_t|}$$

STATIONARY PROCESS

Data are eventually repeated with the same process

- Assumption: recent past \approx future
- Time Horizon: short period
- Data Pattern: nearly constant
- Benefit: remove randomness, reduce sizes of data
- Example: Moving Average, Exponential Smoothing

using average value of q pervious periods as forecast

$$F_t = \frac{1}{q} \sum_{i=1}^q A_{t-i}$$

- F_t = Smoothing value at time t
- A_t = Actual value at time t
 - q = Numbers of interested period

EXAMPLE OF MOVING AVERAGE

		(-)	
Month	Knife Demands	MA(3)	MA(5)
Jan	2000	-	-
Feb	1350	-	-
Mar	1950	-	-
Apr	1975	1767	-
May	3100	1758	-
Jun	1750	2342	2075
Jul	1550	2275	2025
Aug	1300	2133	2065
Sep	2200	1533	1935
Oct	2770	1683	1980
Nov	2350	2092	1915
Dec	-	2440	2034

source: Singkarlsiri C., 1997. pp.10-25

using a previous value and previous error as forecast

$$F_{t} = F_{t-1} + \alpha (A_{t-1} - F_{t-1}) = \alpha A_{t-1} + (1 - \alpha)F_{t-1}$$

 F_t = Smoothing value at time t

$$A_t = Actual value at time t$$

 $\alpha \hspace{.1 in} = \hspace{.1 in} \operatorname{Exponential factor}, \alpha \hspace{.1 in} \in [0,1]$

• Idea: Forecast = α Actual + $(1 - \alpha)$ Old Forecast

$$F_{t} = \alpha A_{t-1} + (1-\alpha) \mathbf{F}_{t-1}$$

= $\alpha A_{t-1} + (1-\alpha) [\alpha A_{t-2} + (1-\alpha) F_{t-2}]$
= $\alpha A_{t-1} + \alpha (1-\alpha) A_{t-2} + (1-\alpha)^{2} \mathbf{F}_{t-2}$

What does it mean?

- Effects of actual value and error exponentially decay
- α controls the decay rate; F_1 is initial forecast value
- if $\alpha = 0$, no effect of actual value
- if $\alpha = 1$, no effect of forecast value

- Good News: effect of F_0 will decay; typically $F_1 = A_1$
- **Bad News**: select 'right' α is difficult \rightarrow try out and error

Month	Knife Demands	$\alpha = 0.1$	$\alpha = 0.5$	$\alpha = 0.9$
Jan	2000	-	-	-
Feb	1350	2000	2000	2000
Mar	1950	1935	1675	1415
Apr	1975	1937	1813	1897
May	3100	1940	1894	1967
Jun	1750	2056	2497	2987
Jul	1550	2026	2123	1874
Aug	1300	1978	1837	1582
Sep	2200	1910	1568	1328
Oct	2770	1939	1884	2113
Nov	2350	2023	2330	2709
Dec	-	2056	2340	2386

Forecasting 101	Time Series	Regression	ARIMA	SG Load
EXCERISE				

BASIC TIME SERIES IN R

<pre>set.seed(937) myTS <- ts(10*rnorm(24)+30,start=c(2008,1),frequency = 12) summary(myTS); tsp(myTS); frequency(myTS); deltat(myTS) cycle(myTS); time(myTS)</pre>
<pre>summary(AirPassengers) decompose(AirPassengers,type="multiplicative") plot(decompose(AirPassengers)) require(ggplot2) ; autoplot(AirPassengers)</pre>
air.trin <- window(AirPassengers, start=1948.0, end=1958.917)
<pre>require(forecast) tsdisplay(air.trin) ; tsoutliers(air.trin) ; tsclean(air.trin) ggseasonplot(air.trin) ; ggmonthplot(air.trin) ; ggtsdisplay(air.trin) ##- transform using moving avg or box-cox lambda.opt <- BoxCox.lambda(air.trin) ## autoplot(BoxCox(air.trin,lambda = lambda.opt))</pre>
<pre>naive(air.trin,h=12)\$mean ; meanf(air.trin,h=12)\$upper snaive(air.trin,h=12)\$fitted ; rvf(air.trin,h=12,drift=T)\$residuals ## rand walk autoplot(air.trin) + autolayer(meanf(air.trin, h=12),series="Mean", PI=F) + autolayer(naive(air.trin, h=12),series="INave", PI=F) + autolayer(snaive(air.trin, h=12),series="S.finave", PI=T)</pre>

ADV TIME SERIES IN R

	<pre>air.holt <- holt(air.trin,h=12) ; autoplot(air.holt) forecast(air.holt,h=12) ; predict(air.holt,n.ahead=12)</pre>
	<pre>checkresidual(air.holt) ; accuracy(air.holt,air.test)</pre>
• Overall:	<pre>autoplot(ses(air.trin,h=12)) ; autoplot(holt(air.trin,h=12)) autoplot(hw}(air.trin,h=12)) ; autoplot(est(air.trin,alpha=0.5))</pre>
	<pre>rbind(accuracy(ses(air.trin,h=12,alpha=0.5,initial="simple")),</pre>
• Decomp:	<pre>ma(air.trin, order=11) ; autoplot(decompose(air.trin)) air.trin.stl <- stl(air.trin,t.window=13, s.window="periodic") autoplot(air.trin.stl) ; remainder(air.trin.stl) seasonal(air.trin.stl) ; seasadj(air.trin.stl) trendcycle(air.trin.stl)</pre>
• ARIMA:	arima(air.trin,order=c(0,0,0),seasonal=list(order=c(0,0,0))) acf(stlf(air.trin,h=12)\$residuals) ## check acf of arima pacf(arima(air.trin,c(1,0,1)\$residuals) ## check partial acf of arima
	part (arrand (

- **Regression**: a function of ind. variables (predictors, *x_i*) to predict a dep variable (response; *y*)
- Linear Regression: predicting y with a linear function of x_i as follows:

$$\mathbf{y} = \beta_0 + \beta_{11}\mathbf{x}_1 + \beta_{12}\mathbf{x}_2 + \ldots + \beta_{1n}\mathbf{x}_n$$

Assumptions:

- Linear relationship between predictors and responses \rightarrow plot
- Independent predictors \rightarrow VIF \leq 4
- multivariate Normal of all variables \rightarrow Q-Q plot, ks.test()
- equal Error terms in regression, a.k.a Homoscedasticity
- little or no AUTOcorrelation \rightarrow DW \approx 2

LINEAR REGRESSION AS MATRIX

$$Y_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i} + \epsilon_{i},$$

where $\epsilon_{i} \sim^{iid} \mathcal{N}(0, \sigma^{2})$
$$\begin{bmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n} \end{bmatrix} = \begin{bmatrix} \beta_{0} + \beta_{1} \mathbf{X}_{1} \\ \beta_{0} + \beta_{1} \mathbf{X}_{2} \\ \vdots \\ \beta_{0} + \beta_{1} \mathbf{X}_{n} \end{bmatrix} + \begin{bmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n} \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} \mathbf{1} \quad \mathbf{X}_{i} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} + \epsilon$$

$$= \mathbf{X}\beta + \epsilon$$

$$f(oldsymbol{eta}|\mathbf{Y},\mathbf{X})\equiv~\epsilon'\epsilon~=~\left[\mathbf{Y}-\mathbf{X}oldsymbol{eta}
ight]'\left[\mathbf{Y}-\mathbf{X}oldsymbol{eta}
ight]$$

apply FOC on eta

$$\mathbf{0} = -2\mathbf{X}' [\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}]$$
$$(\mathbf{X}'\mathbf{X}) \boldsymbol{\beta} = \mathbf{X}'\mathbf{Y}$$
$$\boldsymbol{\beta} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{Y}$$

SIMPLE LINEAR REGRESSION IN R

•	Building:	<pre>data("Davis", package="carData") Viev(self) summary(self) lm(weight,data=self) self.lm <- lm(weight-I(height), fit.lm <- step(lm(weight, da summary(fit.lm)</pre>	<pre>; self < Davis ; edit(self) ## any error? ## linear? data=self) ta=self) ; plot(fit.lm)</pre>	
•	Predict:	<pre>testData <- data.frame(sex=facto</pre>	<pre>br(c('M','M','F','F')) (80,77,80,77),height=(182,161,182,161) (78,78,78,78),repht=c(180,170,180,170)) a) ; residuals(fit.lm) ; anova(fit.lm)</pre>	
۰	Verify:	<pre>require(olsrr) ols_plot_cooksd_chart(fit.lm) ols_test_normality(fit.lm) ols_test_outlier(fit.lm)</pre>	<pre>; ols_vif_tol(fit.lm) ; ols_test_correlation(fit.lm) ; ols_plot_added_variable(fit.lm)</pre>	

GENERAL REGRESSION MODEL

• What: an extensions of regression that allows predictors to be any functions and response from other distributions (e.g., Poisson & Binomial) or other complex function

• Types:

- LOGISTIC REGRESSION response or predictor is binary, e.g. forecasting probability
- POISSON REGRESSION response or predictor is integer, e.g. forecasting number of awards
- $\bullet~{\rm Non-Linear}~{\rm Regression}$ estimation function consists of non-linear terms
- NON-PARAMETRIC REGRESSION estimation function is not predetermined, but based on data (not cover here)

LOGISTIC REGRESSION

• Concept: T/F = probability [0, 1]

• response: $F(\mathbf{X}) = \frac{1}{1+e^{-(\beta_0+\beta_1\mathbf{X})}}$ • linear regression: $\log\left(\frac{F(\mathbf{X})}{1-F(\mathbf{X})}\right) = \beta_0 + \beta_1 \mathbf{X}$

R Command

```
height.glm <- glm(Gender-Height,data=height,family = "binomial")
prob <- data.frame(Gender=factor(rep("M",21)),Height=60:80)
prob$prob < predict(height.glm.newdata=prob.type = "response")</pre>
```

POISSON REGRESSION

• R Command:

```
glm(num_awards-prog + math, family="poisson", data=award)
predict(award.pois,type="response")
plot(jitter(award$num_awards)
,col=award$prog.pch=16,cex=0.5,xlab="Math",ylab="# awards")
```

Forecasting 101 Time Series Regression ARIMA SG Load

combination of linear regression and traditional time series, i.e.,

$$y_t = \beta_0 + \beta_{11}x_1 + \beta_{12}x_2 + \ldots + \beta_{1n}x_n$$

and

 $x_n = f(y_{t-n})$

COMPONENTS OF ARIMA: ARIMA(p, d, q)

• Autocorrelation (AR): linear regression of previous actual

$$F_t = \varphi_0 + \sum_{i=1}^p \varphi_i F_{t-i} + E_t$$

• Integrated (I): previous/lagged value,

$$F_t = \sum_{j=1}^d F_{t-d} + E_t$$

Moving Average (MA): linear regression of previous error

$$F_t = \theta_0 + \sum^q \theta_k E_{t-k} E_t$$

Constant = ARIMA(0,0,0)

 $F_t = C + E_t$

Random Walk = ARIMA(0,1,0) no constant

 $F_t = 0 + F_{t-1} + E_t$

Simple Expo Smoothing = ARIMA(0,1,1)

$$F_{t} = F_{t-1} + \theta_{1}E_{t-1} + E_{t}$$

= $F_{t-1} + \theta_{1}(A_{t-1} - F_{t-1}) + E_{t}$
= $(1 - \theta_{1})F_{t-1} + \theta_{1}A_{t-1} + E_{t}$

Double Expo Smoothing = ARIMA(0,2,2)

CHOOSING ARIMA MODEL

- Autocorrelation Function (ACF) correlative of series compared to itself (lag-h)
- Partial Autocorrelation Function (PACF) ACF after removing effect of previous term

Spike in value of ACF lag-1 to lag-h indicates MA(h), whereas Spike in value of PACF lag-1 to lag-h indicates AR(h)

BACKGROUND

- Deregulated market
- 80% is gas-fired generation plant
- Several disruptions in 2006
- LNG Terminal

QUESTIONS

- Can LNG Terminal reduce price volatility?
- When should SG burn LNG and at which portion?
 - \rightarrow What is pattern of electricity loads?

Forecasting 101	Time Series	Regression	ARIMA	SG Load

HISTORICAL LOADS: HALF-HOURLYDAILY

Load Histogram

- YEAR: regular VS recession; 2003 ... 2009
- MONTH: Quarter; January ... December
- WEEK: weekday VS weekend; Monday ... Sunday
- DAY: peak VS off-peak; peak VS semi peak VS off-peak (exact time)

PROPOSED MODEL

$$f(\mathsf{load}_i) = g(\mathsf{time}_i) \\ + a^m B^m(\mathsf{month}_i) + b^w 1^w_i + b^{p^-w} 1^{p^-w}_i + \mathsf{constant} + \epsilon_t$$

, where

 B^m (month) = integer for monthly seasonality effect 1^w = binary for weekday effect 1^{p^-w} = binary for peak-weekday effect

SELECTION OF REGRESSION MODEL

AIC: FITNESS OF REGRESSION MODEL

$g(\cdot) \setminus f(\cdot)$	load	$\ln(load)$	\sqrt{load}	$load^2$
time	3898.881	-854.503	1120.327	9074.690
$\ln(time)$	3959.229	-806.069	1174.416	9142.393
\sqrt{time}	3902.624	-855.422	1121.700	9083.050
$time^2$	3947.126	-804.609	1169.673	9118.886

Forecasting 101

Regression

Residuals of $\ln(\text{load})$ and time

Forecasting 101 Time Series Regression ARIMA SG Load

ACTUAL VALUES AND ESTIMATION VALUES

Actual and Estimation values

Forecasting 101	Time Series	Regression	ARIMA	SG Load
Reference				

- [BG19] Brad Boehmke and Brandon M Greenwell. Hands-on machine learning with R. CRC press, 2019.
- [NC20] Fred Nwanganga and Mike Chapple. *Practical machine learning in R.* John Wiley & Sons, 2020.
- [Pat14] Manas A Pathak. Beginning data science with R. Springer, 2014.
- [TSK16] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining. Pearson Education India, 2016.