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Outline

1 Review of Forecasting

2 Time Series Techniques

3 Review of Regression

4 ARIMA = Time Series + Regression

5 Cluster with with R

source: General references [NC20, TSK16, BG19, Pat14]

Recommend Textbook
Hyndman, J., & Athanasopoulos, G. (2018) Forecasting: principles and practice, 2nd edition,
OTexts: Melbourne, Australia. OTexts.com/fpp2 .
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Types of Forecasting

Qualitative/Judgmental: using subjective inputs
Time Series: using it own past data as inputs

Smoothing Technique
Trend and Seasonality
Classical Decomposition Method

Causal/Regression: using related data/factors as inputs
Simulation: using both Time Series and Causal in computer simulation

Imitate consumer choices that give rise to demand
Combine time series and causal methods
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Component of Observation

A = F + E + ϵ

Observation:(A) actual data from history
Systematic component: (F) expected value of demand/ forecasting value

Level: current de-seasonalized demand
Tread: growth or decline in demand

Seasonality: predictable seasonal fluctuation
Irregular: error or residuals
Forecast error: (E) difference between forecast and actual demand
Random component: (ϵ) part of the forecast that deviates from the
systematic component
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What should we aware before forecast?

Description: story, relationship with other data
Time Horizon: hour, day, week, year
Pattern of Data: seasonal, trend, cycle
Forecasting Model: assumption, data required, parameters, static VS
dynamic
Accuracy: measuring, how to improve

A good forecaster should:
be creative & curiosity
master the ’art’ and understand science
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Example: US Air Passengers 1949-1951
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Facts about Forecasting

Forecasting is, typically incorrect
Forecasting is suitable for a group of products
Forecasting is inaccurate as time horizon increases

source: Chopra and Meindl. 2001. pp. 69

Why do we still need Forecasting?

Incorrect future is better than knowing nothing
Incorrect result is manageable
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Accuracy of Forecasting

Idea:“average” of Actualt − Forecastt

Example: Mean Error (ME), Mean Absolute Deviation (MAD), Mean Square
Error (MSE), Mean Absolute Percentage Error(MAPE), Tracking signal (TS)

ME =
1
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t=1

At − Ft MSE =
1

N
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(At − Ft)
2

MAD =
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|At − Ft| MAPE =
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100 |At − Ft|
At
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At − Ft TS =

∑N
t=1 At − Ft∑N

t=1 |At − Ft|
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Stationary Process

Data are eventually repeated with the same process
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Smoothing: Simple Forecasting Methods
Assumption: recent past ≈ future
Time Horizon: short period
Data Pattern: nearly constant
Benefit: remove randomness, reduce sizes of data
Example: Moving Average, Exponential Smoothing
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Moving Average: MA(q)

using average value of q pervious periods as forecast

Ft =
1

q

q∑
i=1

At−i

Ft = Smoothing value at time t
At = Actual value at time t
q = Numbers of interested period
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Example of Moving Average

Month Knife Demands MA(3) MA(5)
Jan 2000 - -
Feb 1350 - -
Mar 1950 - -
Apr 1975 1767 -
May 3100 1758 -
Jun 1750 2342 2075
Jul 1550 2275 2025
Aug 1300 2133 2065
Sep 2200 1533 1935
Oct 2770 1683 1980
Nov 2350 2092 1915
Dec - 2440 2034

source: Singkarlsiri C., 1997. pp.10-25
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Exponential Smoothing Model

using a previous value and previous error as forecast

Ft = Ft−1 + α (At−1 − Ft−1)

= α At−1 + (1− α)Ft−1

Ft = Smoothing value at time t
At = Actual value at time t
α = Exponential factor, α ∈ [0, 1]

Idea: Forecast = α Actual + (1− α) Old Forecast
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Why do we call “Exponential Smoothing”?

Ft = α At−1 + (1− α)Ft−1

= α At−1 + (1− α) [α At−2 + (1− α)Ft−2]

= α At−1 + α(1− α)At−2 + (1− α)2Ft−2

What does it mean?
Effects of actual value and error exponentially decay
α controls the decay rate; F1 is initial forecast value
if α = 0, no effect of actual value
if α = 1, no effect of forecast value
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How to choose F1 and α?

Good News: effect of F0 will decay; typically F1 = A1

Bad News: select ‘right’ α is difficult → try out and error

Month Knife Demands α = 0.1 α = 0.5 α = 0.9
Jan 2000 - - -
Feb 1350 2000 2000 2000
Mar 1950 1935 1675 1415
Apr 1975 1937 1813 1897
May 3100 1940 1894 1967
Jun 1750 2056 2497 2987
Jul 1550 2026 2123 1874
Aug 1300 1978 1837 1582
Sep 2200 1910 1568 1328
Oct 2770 1939 1884 2113
Nov 2350 2023 2330 2709
Dec - 2056 2340 2386
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Excerise:
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Basic Time Series in R

ts:

set.seed(937)
myTS <- ts(10*rnorm(24)+30,start=c(2008,1),frequency = 12)
summary(myTS) ; tsp(myTS) ; frequency(myTS) ; deltat(myTS)
cycle(myTS); time(myTS)

summary(AirPassengers)
decompose(AirPassengers ,type="multiplicative")
plot(decompose(AirPassengers))
require(ggplot2) ; autoplot(AirPassengers)

air.trin <- window(AirPassengers ,start=1948.0,end=1958.917)
air.test <- window(AirPassengers ,start=1959.0,end=1959.917)

forecast

require(forecast)
tsdisplay(air.trin) ; tsoutliers(air.trin) ; tsclean(air.trin)
ggseasonplot(air.trin) ; ggmonthplot(air.trin) ; ggtsdisplay(air.trin)
##-- transform using moving avg or box-cox
lambda.opt <- BoxCox.lambda(air.trin) ##
autoplot(BoxCox(air.trin,lambda = lambda.opt))

Simple

naive(air.trin,h=12)$mean ; meanf(air.trin,h=12)$upper
snaive(air.trin,h=12)$fitted ; rwf(air.trin,h=12,drift=T)$residuals ## rand walk
autoplot(air.trin) +

autolayer(meanf(air.trin, h=12),series="Mean", PI=F) +
autolayer(naive(air.trin, h=12),series="ïNave", PI=F) +
autolayer(snaive(air.trin, h=12),series="S.ïnave", PI=T)
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Adv Time Series in R

Overall:

air.holt <- holt(air.trin,h=12) ; autoplot(air.holt)
forecast(air.holt,h=12) ; predict(air.holt,n.ahead=12)

checkresidual(air.holt) ; accuracy(air.holt,air.test)

autoplot(ses(air.trin,h=12)) ; autoplot(holt(air.trin,h=12))
autoplot(hw}(air.trin,h=12)) ;
autoplot(est(air.trin,alpha=0.5))

rbind(accuracy(ses(air.trin,h=12,alpha=0.5,initial="simple")),
accuracy(ses(air.trin,h=12))

)
ets(air.trin) ## multi -purpose and optimal tool for expo series

Decomp:
ma(air.trin, order=11) ; autoplot(decompose(air.trin))
air.trin.stl <- stl(air.trin,t.window=13, s.window="periodic")
autoplot(air.trin.stl) ; remainder(air.trin.stl)
seasonal(air.trin.stl) ; seasadj(air.trin.stl)
trendcycle(air.trin.stl)

ARIMA:
arima(air.trin,order=c(0,0,0),seasonal=list(order=c(0,0,0)))
acf(stlf(air.trin,h=12)$residuals) ## check acf of arima
pacf(arima(air.trin,c(1,0,1))$residuals) ## check partial acf of arima
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Regression Re-Cap

Regression: a function of ind. variables (predictors, xi) to predict a dep
variable (response; y)
Linear Regression: predicting y with a linear function of xi as follows:

y = β0 + β11x1 + β12x2 + . . .+ β1nxn

Assumptions:
Linear relationship between predictors and responses → plot
Independent predictors → VIF ≤ 4
multivariate Normal of all variables → Q-Q plot, ks.test()
equal Error terms in regression, a.k.a Homoscedasticity
little or no AUTOcorrelation → DW ≈ 2
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Linear Regression as Matrix

Yi = β0 + β1Xi + ϵi,

where ϵi ∼iid N (0, σ2)
Y1

Y2

...
Yn

 =


β0 + β1X1

β0 + β1X2

...
β0 + β1Xn

+


ϵ1
ϵ2
...
ϵn


Y =

[
1 Xi

] [β0

β1

]
+ ϵ

= Xβ + ϵ
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Solve for β to min ϵ2

f(β|Y,X) ≡ ϵ′ϵ = [Y − Xβ]
′
[Y − Xβ]

apply FOC on β

0 = −2X′ [Y − Xβ]

(X′X)β = X′Y
β = (X′X)

−1 X′Y
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Simple Linear Regression in R

Building:

data("Davis", package="carData") ; self <- Davis
View(self) ; edit(self)
summary(self) ## any error?
lm(weight~.,data=self) ## linear?
self.lm <- lm(weight~I(height), data=self )
fit.lm <- step(lm(weight~., data=self))
summary(fit.lm) ; plot(fit.lm)

Predict:

testData <- data.frame(sex=factor(c('M','M','F','F'))
,weight=c(80,77,80,77),height=c(182,161,182,161)
,repwt=c(78,78,78,78),repht=c(180,170,180,170))

predict(fit.lm,newdata = testData)

confint(fit.lm) ; residuals(fit.lm)
fitted(fit.lm) ; anova(fit.lm)

Verify:
require(olsrr)
ols_plot_cooksd_chart(fit.lm) ; ols_vif_tol(fit.lm)
ols_test_normality(fit.lm) ; ols_test_correlation(fit.lm)
ols_test_outlier(fit.lm) ; ols_plot_added_variable(fit.lm)
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General Regression Model

What: an extensions of regression that allows predictors to be any functions
and response from other distributions (e.g., Poisson & Binomial) or other
complex function

Types:
Logistic Regression response or predictor is binary, e.g. forecasting
probability
Poisson Regression response or predictor is integer, e.g. forecasting
number of awards
Non-Linear Regression estimation function consists of non-linear terms
Non-Parametric Regression estimation function is not predetermined,
but based on data (not cover here )
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Logistic Regression

Concept: T/F = probability [0, 1]

response: F(X) = 1

1+e−(β0+β1X)

linear regression: log
(

F(X)
1−F(X)

)
= β0 + β1X

R Command
height.glm <- glm(Gender~Height,data=height,family = "binomial")
prob <- data.frame(Gender=factor(rep("M",21)),Height=60:80)
prob$prob < predict(height.glm,newdata= prob,type = "response")
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Poisson Regression

R Command:
glm(num_awards~prog + math, family="poisson", data=award)
predict(award.pois,type="response")
plot(jitter(award$math),jitter(award$num_awards)

,col=award$prog,pch=16,cex=0.5,xlab="Math",ylab="# awards")
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What is ARIMA?
combination of linear regression and traditional time series, i.e.,

yt = β0 + β11x1 + β12x2 + . . .+ β1nxn

and
xn = f(yt−n)

Components of ARIMA: ARIMA(p, d, q)
Autocorrelation (AR): linear regression of previous actual

Ft = φ0 +

p∑
i=1

φiFt−i + Et

Integrated (I): previous/lagged value,

Ft =
d∑

j=1

Ft−d + Et

Moving Average (MA): linear regression of previous error

Ft = θ0 +

q∑
k=1

θkEt−kEt
OPT FIN/ COMP METHOD v2.0: prediction 26/ 37
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Special Cases

Constant = ARIMA(0,0,0)

Ft = C + Et

Random Walk = ARIMA(0,1,0) no constant

Ft = 0 + Ft−1 + Et

Simple Expo Smoothing = ARIMA(0,1,1)

Ft = Ft−1 + θ1Et−1 + Et

= Ft−1 + θ1(At−1 − Ft−1) + Et

= (1− θ1)Ft−1 + θ1At−1 + Et

Double Expo Smoothing = ARIMA(0,2,2)

OPT FIN/ COMP METHOD v2.0: prediction 27/ 37
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Choosing ARIMA model
Autocorrelation Function (ACF) correlative of series compared to itself
(lag-h)
Partial Autocorrelation Function (PACF) ACF after removing effect of
previous term

Spike in value of ACF lag-1 to lag-h indicates MA(h), whereas Spike in value of
PACF lag-1 to lag-h indicates AR(h)

OPT FIN/ COMP METHOD v2.0: prediction 28/ 37
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Case Study: Regression of SG Load

Background
Deregulated market
80% is gas-fired generation plant
Several disruptions in 2006
LNG Terminal

Questions
Can LNG Terminal reduce price volatility?
When should SG burn LNG and at which portion?
→ What is pattern of electricity loads?
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Historical loads: half-hourlydaily
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Electricity load histogram
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What should be factors of load?

Year: regular VS recession; 2003 . . . 2009
Month: Quarter; January . . . December
Week: weekday VS weekend; Monday . . . Sunday
Day: peak VS off-peak; peak VS semi peak VS off-peak (exact time)

OPT FIN/ COMP METHOD v2.0: prediction 32/ 37
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Regression model of electrical load

Proposed Model

f(loadi) = g(timei)

+amBm(monthi) + bw1w
i + bp-w1p-w

i + constant + ϵt

, where

Bm(month) = integer for monthly seasonality effect
1w = binary for weekday effect

1p-w = binary for peak-weekday effect

OPT FIN/ COMP METHOD v2.0: prediction 33/ 37
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Selection of Regression model

AIC: Fitness of regression model

g(·)\f(·) load ln(load)
√

load load2

time 3898.881 -854.503 1120.327 9074.690
ln(time) 3959.229 -806.069 1174.416 9142.393√

time 3902.624 -855.422 1121.700 9083.050
time2 3947.126 -804.609 1169.673 9118.886

OPT FIN/ COMP METHOD v2.0: prediction 34/ 37
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Residuals of ln(load) and time
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Actual values and Estimation values
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