2104529 Computational Method for IE Workshop 1: Basic in R Programming

Question 1

Consider a dice experiment that a player roller three dices. The outcome of the experiment is the summation of dices.

- (a) If dices are fair, what is the descriptive statistic of the outcomes as well as its visualization
- (b) If dices are fair, what it the distribution of the outcome? Does the outcome normally distributed?
- (c) what happen if If dices are bias.

Question 2

Consider multiplication table 20×20 , particularly

	1	2	3		20
1	1	2	3	•••	20
2	2	4	6	• • •	40
:				·	:
20	20	40	60	•••	400

- (a) create the table using R/RStudio (**hint:** There are two ways to complete this assignment: for(\cdot) loop, outer(\cdot))
- (b) [0 points (bonus)] use $outer(\cdot)$ to create additive, subtraction, and power tables
- (c) [0 points (bonus)] access diagonal/ upper triangle/ reverse diagonal of the matrix
- (d) [0 points (bonus)] compute $det(\cdot)$ explain the mathematical implication of result

Question 3

Consider of the following cash flow of project if an annual investment interest rate is 8%.

Year	0	1	2	3	4	5	6
Cash flow	-1350	363	551	681	761	821	1467

- (a) determine Net Present Value, Payback Period, and Internal Rate of Return
- (b) [0 points (bonus)] implement combined variation of interpolation and BiSection Search and compare the result with polyroot(·) when compute IRR

Question 4

A 10-year, 12 % semiannual coupon bond, with a par value of \$1000 may be called in 4 years at a call price of \$1060. The bond sells for \$1100 (Assume that the bond has just been issued.)

- (a) What is the bond's yield to maturity?
- (b) What is the bond's yield to call?
- (c) [0 points (bonus)] plot the yield curves (both maturity and call) if the bond is traded between 900 to 1200 THB

Question 5

Consider a 12-Years 7.980000% of annual coupon bond of BANPU plc issued on 01-Apr-11 with a par value of THB1000. Answer the following questions

- (a) If such bond trades at THB1020 on 01-Apr-11, should we buy it?
- (b) What is the **spread** of this bond comparing to Thai bonds (Yield Curve: thYeild-20130401.csv)?
 - import Thai risk free bonds data on 02-Apr-13: thYeild-20130401.csv
 - generate cash flow of bond of BANPU plc from 02-Apr-12 onward
 - solve for yield spread x from the following equation:

$$\sum_{t=0}^{n} \frac{\operatorname{cash}\,\operatorname{flow}_{t}}{(1+\operatorname{risk}\,\operatorname{free}\,\operatorname{yield}+x)^{t}} = 0$$

(c) [0 points (bonus)] repeat the question with current Current Thai Bond , assuming the other factors remains unchanged.

Question 6

Determine the *first-* and *second-order functional derivative* of the following functions at a specific point

- (a) $f(x_1) = \sin(x_1) e^{-x_1^2}$, at x = 1
- (b) $g(x_1, x_2) = x_1 e^{-x_2} + x_2 + 1, (x_1, x_2) = (1, 0)$
- (c) $h(x_1, x_2, x_3, x_4) = 100(x_1 x_2)^2 + 10(x_2 x_3)^4 + (x_3 x_4)^6$, at $(x_1, x_2, x_3, x_4) = (1, 2, -1, 0)$.
- (d) [0 points (bonus)] graph values of function, first-derivative, and second-derivative across their ranges

Question 7

If a company charges a price p USD for a product, then it can sell $3000e^{-p}$ units of the product.

- (a) plot revenue function
- (b) use Newton method to find the optimal p, denoted by p^* , using p = 0 as initial point for 10 iterations
- (c) use R function 'optimize()' to solve for p^* and compare results with other methods
- (d) [0 points (bonus)] implement Stochastic Search and to find p^*

Question 8

Let $f(x) = 3x e^{-x^2} - 3\frac{1}{x}\ln(x), x \ge 0.$

- (a) plot f(x) versus x over the interval [0, 20]
- (b) use the Newton's Method 10 iterations to locate x_*