2104529 Computational Method for IE Workshop 3: Unconstraint Optimization

Question 1

Consider the following function

$$f(\mathbf{x}) = (x_1 - 4)^4 + (x_2 - 3)^2 + 4(x_3 + 5)^4,$$

where $\mathbf{x} = [x_1, x_2, x_3]^T \in \mathbb{R}^3$ with $[4.0, 2.0, -1.0]^T$ as initial point.

- (a) plot contour of this function around $x_1 = 4$, $x_2 = [0, 8]$, $x_3 = [-1, -9]$
- (b) compute gradient vector and hessian matrix at the initial point
- (c) apply Steepest Decending Code to solve this question steepestDescend.R
- (d) solve the problem with R script using Descending Method using fixed stepsize

$$\gamma_k = \frac{2}{\lambda_{\max}(\nabla^2 f(\mathbf{x}_k))}, \text{ where } \lambda_{\max}(\nabla^2 f(\mathbf{x}_k)) \text{ is eigenvalue}$$

for 5 iterations using and compare result with Steepest Descending Method in term of direction and stepsizes

- (e) [0 points (bonus)] find the optimal solution using R command optim (\cdot)
- (f) [0 points (bonus)] apply Newton's Method to solve the problem pureNewton.R

Question 2

Using Newton Method to find solution of this Powell function

$$f(\mathbf{x}) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4$$

for three iteration with a initial points is $\mathbf{x}_0 = [3, -1, 0, 1]^T$ under the following condition.

$$\gamma_k = \max\{\frac{1}{2^n} : f(\mathbf{x} - \frac{1}{2^n} \nabla f(\mathbf{x}_k)) \le f(\mathbf{x}_k), n \in \mathbb{Z}^+\}$$

- (a) use a variation of Gradient Method in which γ_k as the stepsize in iteration k
- (b) use a variation of Newton Method in which γ_k as the stepsize in iteration k
- (c) compare two algorithms in terms of stepsize, search direction, quality of solution, and gap from optimal solution
- (d) [0 points (bonus)] Using R command optim (\cdot)

Question 3

Consider the results of experiments

	1	2	3	4	5	6	7	8	9	10
t	0.1	1.2	2.1	4.6	5.6	5.9	6.2	6.8	8.1	9.3
у	1.816	0.267	-0.304	-0.849	-1.053	-1.200	-1.260	-1.294	-1.628	-1.881

If the best function to describe the relationship is:

$$\hat{y} = x_1 + x_2 t + x_3 e^{x_4 t}$$

- (a) Formulate nonlinear function that minimize sum square error
- (b) Solve the nonlinear function using Newton Method and the initial $\mathbf{x}_0 = [0.1, -0.2, 2.0, 1.0]^T$
- (c) Estimate parameters (x_1, x_2, x_3, x_4) using Guass-Newton Method and the initial $\mathbf{x_0} = [0.1, -0.2, 2.0, 1.0]^T$
- (d) find the optimal parameters (x_1, x_2, x_3, x_4) using R command nls (\cdot)

Question 4

Consider facility location problem that minimize total transportation cost from a single warehouse X to/frome the following locations.

No.	customer	location $(\mathbf{p_i})$	# shipments (w_i)
1	А	(8,2)	9
2	В	(3,10)	7
3	\mathbf{C}	(8,15)	2
4	D	(3,4)	6
5	\mathbf{E}	(16,8)	7
6	\mathbf{F}	(4,5)	5
	Х	(x,y)	-

- (a) plot locations of each customer along its their shipments and guess the location of warehouse
- (b) locate the warehouse that minimizes the total transportation cost that is estimated by

$$2\sum_{i} w_i \cdot d(p_i, X)$$

- (c) plot contour of total weight distance in pervious questions and guess the solution
- (d) locate the warehouse that minimizes the total transportation cost that is calculated by

$$\sum_{i} \left[w_i \cdot d(p_i, X) + \max(w_1^{1/2} \cdot d(p_i, X)^{3/2}, w_i^{3/2} \cdot d(p_i, X)^{1/2}) \right]$$

, locate the warehouse that minimizes the transportation cost

(e) [0 points (bonus)] repeat calculation if the location and weight of facilities are generated

where $d(p_1, p_2)$ is Euclidean distance between points p_1 and p_2

last updated: August 8, 2022